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Motivation

* To characterize and develop mathematical models for the evolution of
mechanical properties during the growth of collagen-based native
tissues

« To engineer functional, implantable collagen-based tissue constructs in
vitro, for studies of growth both in vitro and in vivo
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(Collagen-Based) Soft Tissue Model: Tendon
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Adult tendon
*Relatively avascular
*Relatively acellular
*Non-innervated
*80% of dry weight 1s type I collagen
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Tissue Engineering: Tendon Cells Deposit a
Physiologically Relevant Matrix In-Vitro

Why in vitro models?
Physiological relevance?

Fisher F344 rat tendon
cells are plated on natural
mouse laminin coated
substrates, in media
supplemented with growth
factors

The cells form tendon cell
arrays, secrete and
organize a pericellular
environment similar to
that found in vivo within
48 hours of plating:
versican and type VI
collagen

Rat tendon cell arrays engineered in-vitro [Calve et al.]

nuclei type Vl collagen

overlay

Canine tendon cell arrays in-vivo [Ritty et al., Structure,

V11, pl179-1188, 2003]

A fibrillin-2 (red) [bar 80 mm], B versican (green), C and D
fibrillin and versican [bar 120 mm in C and 80 mm in D]
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Tendon Engineering by the Self-Organization
of Cells and their Autogenous Matrix In-Vitro

« Cells continue to express
proteins associated with
the ECM in culture

« After approximately 2
weeks in culture the cells
and ECM lift off the
substrate and contract
into a cylindrical
construct

Fibronectin 20x
1 day

Type | Collagen. 40x

 Homogeneous, 12 mm
long

Fibronectin 40x

Type lIl Collagen
0 days
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Nominal Stress [kPa]
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Homogeneous Growth in Engineered
Constructs

As-formed (0.01/sec) Four weeks in static culture (0.01/sec)
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Both an increase in collagen content and cross-linking play a role
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Tangent Modulus (MPa)

Percent Collagen/Dry weight

TA length (mm)
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Modelling Approach

e Growth: An addition of mass to the tissue
* (lassical balance laws enhanced via fluxes and sources
« Multiple species inter-converting and interacting:

— Solid: Collagen, proteoglycans, cells

— Extra cellular fluid: Water (undergoes transport relative to the solid)
— Dissolved solutes: Sugars, proteins, ... (undergo transport relative to fluid)
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Mass Balance

—

Q¢

=M -Vx - M"* ph — species concentration
[1* — species production
M" - species flux
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Momentum Balance

V - solid velocity

V' — species relative velocity
g — body force

g’ — interaction force

P — partial stress
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Constitutive Framework

Consistent with the dissipation inequality

Constitutive hypothesis: e* = é"(FCL Ph, ")

Collagen Stress: P€ c_Oe” Fe°

— PO E=

» Hyperelastic Material
» Continuum stored energy function based on the Worm-like

chain model
Fluid Stress: P = pf dFee Fe
B Ideal Fluid

» phel = —h(det(Fe)

Fluid flux relative to collagen

Mf

D' (g + FIVx P!

T

1)?, k — fluid bulk modulus

"'

— Vx(e’r — an))
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Example: Growth 1n a Bath

» Biphasic model

» worm-like chain model for collagen
» ideal, nearly incompressible interstitial fluid with

bulk compressibility of water
> fluid mobility Df; = 1 x 107%3;;, Han et al. [2000]

» “Artificial” sources: M = —k*(pl — pgini), ne=—nt

f
> Entropy of mixing: nf, = —=% Iog%

P MehiganEnglineering



Example: Growth 1n a Bath
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Native Tendon 1s Functionally Graded
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Tendon Growth 1s Not Homogeneous
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How could this be modelled?
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Choices for Volumetric Sources

e Simple first order rate law —

Constituents either “solid” or “fluid”
I = k(= gf,), T =

e Strain Energy Dependencies —
Weighted by relative densities

C
Hc — ( 88 )—771\110 _ \IJS
[Harrigan & Hlal#\ilton, 1993]

e Enzyme Kinetics — Introducing
additional species to the mixture

> H?nax ;

[Michaelis & Menten, 1913]

Enzyme Kinetics

E+SA;‘1ES’”—2>E+P
-1

k1 - Association of substrate and enzyme
k_1 - Dissociation of unaltered substrate
ko - Formation of product

s _ (kot+k_1q)
Pm = t1

maj
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Viscoelastic Response of TA Tendon
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Regional Variation Manifested in Viscoelastic
Response of TA Tendon

Near muscle

Nominal Strain

Nominal Strain

=009 Average =009
o o
g g
@ @ 0.06 -
g g
7] 7]
f: T 0.03 |
£ £
5 §
z N T T 1 z 0
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2
Nominal Strain Nominal Strain
5009 Near bone 5009 Fibrocartilage
2 g
@ 0.06 @ 0.06 -
g g
7 7
w® 0.03 w® 0.03
£ £
5 5
Z 9 ‘ ‘ Z 0
0.05 0.1 0.15 0.2 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-~

-

MhiganEngineering



Example: Viscoelasticity

Tendon immersed in a bath; no
growth.

Strain rate = 0.01/s

Terms 1n dissipation inequality

result 1n loss

— Scaled by mobilities, which are
fixed from literature
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Summary and future work

Highlighted some recent experimental results pertinent to the
mechanics of growing tendon

— Heterogeneity and functional gradation
Brief introduction to the formulation and modelling choices

Open issues involving choices for modelling more complex behaviour

Continue engineering and characterization of growing, functional
biological tissue to drive and validate modelling

Revisit fundamental kinematics assumptions to enhance the model
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