A Continuum Framework for Growth in Biological Tissue Harish Narayanan¹, Krishna Garikipati¹, Ellen M. Arruda^{1,2}, Karl Grosh^{1,3} and Sarah Calve² ¹Department of Mechanical Engineering, ²Macromolecular Science and Engineering Center and ³Biomedical Engineering, University of Michigan

Introduction

- Developing a mathematical framework to describe and simulate the complex processes of growth in a biological tissue
- Provide a predictive capability for our experiments on engineered tissue with eventual application to surgery, wound healing, ...

Comparison with neonatal tissue

Morphological comparison of the engineered constructs to 2 day old neonatal rat tendon

Comparison of the stress-strain response of the engineered

Energy balance, constitutive laws

For a species ι , in local form, in Ω_0

$$\rho_0^{\iota} \frac{\partial e^{\iota}}{\partial t} = \boldsymbol{S}^{\iota} : \dot{\boldsymbol{F}} + \boldsymbol{S}^{\iota} : \boldsymbol{\nabla}_X \boldsymbol{V}^{\iota} - \boldsymbol{\nabla}_X \cdot \boldsymbol{Q}^{\iota} + r_0^{\iota} + \rho_0^{\iota} \tilde{e}^{\iota} - \boldsymbol{\nabla}_X e^{\iota} \cdot (\boldsymbol{M}^{\iota})$$

Constitutive relations:

Development of tissue

 Growth/Resorption: Addition/Loss of mass e.g. Densification of bones

Remodelling: Change in microstructure e.g. Alignment of trabeculae to the axis of external loading

• Morphogenesis: Change in macroscopic form e.g. Development of an embryo from a fertilized egg

[Taber - 1995]

Goals

• Describe and simulate the processes of growth and development

 Models that are physiologically appropriate and thermodynamically valid

• Experiments on in vitro tissue in parallel

construct to embryonic chicken tendon

[Calve et al. - 2003]

• Capability to engineer constructs which model real tissue

• Carefully control environment and apply stimuli to control growth and remodelling Mechanical loading in bioreactors Chemical evironment and nutrient supply

 $\boldsymbol{u}\cdot\boldsymbol{K}^{\iota}\boldsymbol{u}\geq0\,\forall\boldsymbol{u}\in\mathbb{R}^{3}$

 $oldsymbol{V}^{\iota} = - ilde{oldsymbol{D}}^{\iota} \left(
ho_0^{\iota} rac{\partial oldsymbol{V}}{\partial t} -
ho_0^{\iota} oldsymbol{g} - oldsymbol{
abla}_X \cdot oldsymbol{S}^{\iota}
ight)$

 $-\tilde{\boldsymbol{D}}^{\iota}\left(\rho_{0}^{\iota}\boldsymbol{F}^{-\mathrm{T}}\left(\boldsymbol{\nabla}_{X}e^{\iota}-\theta\boldsymbol{\nabla}_{X}\boldsymbol{\eta}^{\iota}\right)\right),\;\forall\,\iota$ $\boldsymbol{u} \cdot \tilde{\boldsymbol{D}}^{\iota} \boldsymbol{u} \ge 0 \, \forall \boldsymbol{u} \in \mathbb{R}^3$

 e^{ι} is the internal energy of each species ι F is the deformation gradient Q^{ι} is the heat flux term for species ι r_0^{ι} is the heat supplied to species ι per unit reference volume \tilde{e} is the internal energy transferred to species ι from all other species

• An idealized model of the cylindrical tendon construct

 \bigcirc Simplified 1D case involving two species, α , a solid and β , a fluid

Solid is neo-hookean, fluid is compressible and ideal

 $\bigcirc \rho_0^\beta$ and the stretch Λ vary, and calculated values are used to determine the flux

Descriptive model driven and validated by experiment Model drives the controlled experiments

Issues that arise

- Open system (with respect to mass)
- Interacting and interconverting species
- Species diffusing with respect to a solid phase (fluid, precursors, byproducts)
- Mixture physics

Biological model

 Ω_t

In the reference configuration Ω_0 ,

 Π^{ι} is the source/sink term for species ι $oldsymbol{M}^{\iota}$ is the mass flux term for species ι $oldsymbol{S}^{\iota}$ is the partial first Piola-Kirchhoff stress on species ι N is the outward normal at the surface g is the body force acting on the entire system

In the current configuration Ω_t ,

 π^{ι} is the source/sink term for species ι m^{ι} is the mass flux term for species ι σ^{ι} is the partial Cauchy stress on species ι *n* is the outward normal at the surface g is the body force acting on the entire system

Balance of mass and momentum

Coupling of diffusion to stress

• The flux M^{β} ($4.5X10^{-4}kg/m^2/s$) driven

Gravity Concentration gradient

Mechanics influences mass balance

Achievements and future work

 Physiologically consistent continuum formulation describing growth in an open system

• Relevant driving forces arise from thermodynamics

Engineered tendon construct in vitro that is morphologically and functionally similar to neonatal tissue [Calve et al. - 2003]

For a species ι , in local form, in Ω_0

 $\frac{\partial \rho_0^\iota}{\partial t} = \Pi^\iota - \boldsymbol{\nabla}_X \cdot \boldsymbol{M}^\iota$ $\rho_{0}^{\iota}\frac{\partial}{\partial t}\left(\boldsymbol{V}+\boldsymbol{V}^{\iota}\right)=\rho_{0}^{\iota}\left(\boldsymbol{g}+\boldsymbol{q}^{\iota}\right)+\boldsymbol{\nabla}_{X}\cdot\boldsymbol{S}^{\iota}-\left(\boldsymbol{\nabla}_{X}\left(\boldsymbol{V}+\boldsymbol{V}^{\iota}\right)\right)\boldsymbol{M}^{\iota}$

V is the velocity of the solid phase $m{V}^{\iota}$ is the material velocity relative to the solid phase defined as $m{V}^{\iota}=(1/
ho_0^{\iota})m{F}m{M}^{\iota}$ q^{ι} is the net force exerted on species ι by all other species in the system

Consistent with mixture theory

• Applying present theory to 3D tissues involving multiple species diffusing and reacting

• Formulated the remodelling problem – Preliminary results